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Abstract. In this paper we develop a finite element approximation for vector-valued hemivariational
inequalities. This class of hemivariational problems was introduced in [12],[13]. We study two
different problems: unconstrained one and constrained one with a nonempty, closed, convex constraint
set K.

We shall show firstly that the discrete problems are solvable by using consequences of Kakutani
fixed point theorem and secondly that the solutions of the discrete problems are close on subsequences
to the continuous ones.
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1. Introduction

Hemivariational inequalities (HVI) introduced by Panagiotopoulos [15]–[17] can
be considered as a generalization of variational inequalities. By means of them,
problems with nonmonotone and multivalued constitutive laws can be formulated
and solved. For the mathematical theory and the applications of (HVI) we refer to
[12],[17] and the extensive bibliographies therein.

In this paper we shall present a finite element approximation of vector-valued
(HVI) being a straightforward extension of the approximation of scalar-valued
(HVI) presented in [7]–[10]. A similar type approximation model has been used
also in [4],[5] for the elliptic variational inequalities of the second kind. But
due to the nonmonotone nature of (HVI) the treatment of our problem is more
involved. The outline of this paper is as follows. In the first section we shall present
vector-valued (HVI) involving a nonmonotone multivalued relation in some part
of a domain 
 � RN (problem (P1)) or on some part of the boundary of 


(problem (P2)), and state sufficient conditions guaranteeing their solvability. For
the proofs of the existence results we refer to [12],[13]. Then we analyze a finite
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element approximation for the problem (P1) only, because the problem (P2) can
be treated in a similar way. In the second section we show that there exists at least
one solution of the approximation problem by using a consequence of Kakutani
fixed point theorem presented [1]. Then we show that the solutions of the discrete
problems tend on subsequences to the solutions of the continuous one. In the third
section we consider the approximation of vector-valued (HVI) having a nonempty,
convex, closed constraint set. For this problem we shall prove the same results
as for the unconstrained one. In the last section we present an example of vector-
valued (HVI), a nonmonotone skin friction in plane elasticity, and discuss how its
approximation can be constructed.

2. Statement of the Problem

Let 
 � RN be a bounded domain with Lipschitz boundary �. Let V be a
real Hilbert space equipped with the norm k � kV , V 0 the dual space of V with
the norm k � kV 0 and h�; �iV the corresponding duality pairing. We shall divide
our considerations into two different cases. Firstly we shall study (HVI) having a
nonmonotone multivalued condition on a subdomain
0 of
 and then (HVI) given
by a nonmonotone multivalued condition on some set�0 open in �. In applications
in mechanics of solids the Hilbert space V is typically a subspace of H1(
;RM ).
Finally let us denote Y1 = L2(
0;RM ) and Y2 = L2(�0;RM ). We shall identify
Y1, Y2 with their dual spacesY 0

1 , Y 0
2 , respectively. In Y1 and Y2 we use as the duality

pairings the standard L2-inner products, i.e.

hy; ziY1 =

Z

0

y(x) � z(x) dx =

Z

0

MX
i=1

yi(x)zi(x) dx;

hy; ziY2 =

Z
�0

y(x) � z(x) ds =
Z
�0

MX
i=1

yi(x)zi(x) ds;

where y = (y1; :::; yM ) and z = (z1; :::; zM ), and the norms are the standard
L2-norms induced by the above inner products.

For describing the nonmonotone multi-valued relations we introduce a locally
Lipschitz continuous function j : RM ! R. Let us first define what we mean by
the generalized directional derivatives and the generalized gradients (in Clarke’s
sense) of a locally Lipschitz continuous function [3]:

DEFINITION 1. Let X be a Banach space and f : X ! R a locally Lipschitz
continuous near a point x 2 X . The generalized directional derivative of f at x in
the direction z is defined as follows:

f�(x; z) = lim sup
y!x;t!0+

f(y + tz)� f(y)

t
:

The generalized gradient of f at x, denoted @f(x), is the subset of X 0 given by

@f(x) = fy 2 X 0 : f�(x; z) � hy; ziX 8z 2 Xg:



APPROXIMATION OF VECTOR-VALUED HEMIVARIATIONAL PROBLEMS 19

Let us turn back to our problem. The function j is supposed to satisfy firstly
the generalized sign condition which is expressed by means of the generalized
directional derivative of j. It reads as follows:

j�(�;��) � C1 + C2j�j
q 8� 2 RM ; (1)

whereC1 andC2 are positive constants independent of � and 1 � q < 2. Secondly,
the function j fulfills the following growth condition expressed by means of the
generalized gradient of j:

� 2 @j(�) =) j�j � C3(1 + j�j); (2)

whereC3 is a positive constant independent of � and �. We assume that the bilinear
form a : V � V ! R satisfies the standard continuity and coercivness conditions:

ja(v; w)j � mkvkV kwkV 8v; w 2 V ; (3)

a(v; v) � �kvk2
V 8v 2 V; (4)

where m and � are positive constants. Let g be an element of V 0.
By a vector-valued hemivariational inequality we mean the problem

8<
:

find u 2 V and X (u) 2 Y1 such that
a(u; v) +

R

0
X � v dx = hg; viV 8v 2 V

and X (x) 2 @j(u(x)) a.e. in 
0

(P1)

or 8<
:

find u 2 V and X (u) 2 Y2 such that
a(u; v) +

R
�0
X � v ds = hg; viV 8v 2 V

and X (x) 2 @j(u(x)) a.e. in �0:

(P2)

REMARK 1. A simple example of j which satisfies (1) and (2) is a minimum
function of two convex quadratic functions, i.e.,

j(�) = minff1(�); f2(�)g 8� 2 RM :

Now, we see easily that j satisfies (2), because its generalized gradient @j(�)
at a point � belongs to the convex hull of frfi(�) : i = 1; 2g. Moreover, since
j0(�; �) = maxf�� � � : �� 2 @j(�)g and the fact that rf1(�) � �;rf2(�) � � � 0,
we see that

j0(�;��) � maxf�� � (��) : �� = �rf1(�) + (1� �)rf2(�); � 2 [0; 1]g

� 0

implying (1).
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REMARK 2. Now we explain the relation between problem (P1) and a basic scalar
hemivariational inequality introduced by Panagiotopoulos (for details see [16]).
Let b be a function from R to R such that:

b 2 L1loc(R); (5)

there exists �� > 0 such that

ess sup�2(�1;���)b(�) � 0 � ess inf�2(��;1)b(�): (6)

For any " > 0 we define two auxiliary functions:

b"(�) = ess infj���j�"b(�); b"(�) = ess supj���j�"b(�);

and letting " ! 0+ we get the upper and the lower bounds for a multivalued
function b̂ : R! R as follows:

b(�) = lim
"!0+

b"(�); b(�) = lim
"!0+

b"(�)

giving

b̂(�) = [b(�); b(�)]:

The basic scalar hemivariational inequality reads as follows:
8>>><
>>>:

find u 2 V and X (u) 2 L1(
0) \ V
0 such that

a(u; v) + hX ; viV = hg; viV 8v 2 V;

X (x) 2 b̂(u(x)) a.e. in 
0 and
hX ; vi =

R

0
X (x)v(x) dx 8v 2 V \ L1(
0):

(P1)’

If the locally Lipschitz continuous function j : R! R is defined by the relation

j(�) =

Z �

0
b(�) d�;

it is straightforward to see that the generalized gradient of j satisfies

@j(�) � b̂(�); for any � 2 R: (7)

This implies that every solution of (P1) is now a solution of (P1)’, but not necessarily
vice versa. We have the equality in (7), if the limits lim

�!~�+
b(�) and lim

�!~�� b(�)

exist for any ~� 2 R. It is easy to see that the condition (2) is more restrictive than
(5), but, on the contrary, the condition (6) is more restrictive than (1). Then, of
course, (P1) and (P1)’ are equivalent provided that (2), (6) and the equality in (7)
hold. On the other hand, (P1) permits to treat the vector case, as well.

Let us transform (P1) and (P2) to equivalent operator inclusions, which read as
follows:



APPROXIMATION OF VECTOR-VALUED HEMIVARIATIONAL PROBLEMS 21

find u 2 V such that 0 2 Au� g + T1u; (P1)

or
find u 2 V such that 0 2 Au� g + T2u; (P2)

where A is a linear operator from V to V 0 defined by hAu; viV = a(u; v) for all
u; v 2 V and T1, T2 are the set-valued operators from V to V 0 defined by

T1v = fw 2 L2(
0;RM ) : w(x) 2 @j(v(x)) a.e . in 
0g;
T2v = fw 2 L2(�0;RM ) : w(x) 2 @j(v(x)) a.e . in �0g:

To prove that (P1) or (P2) has a solution one can use, e.g. the Galerkin approach
presented in Chapter 5 of [12]. In this case it is natural to use the former formulation
of the problems. The other possibity is to prove that A(�) � g + T1(�) or A(�) �
g + T2(�) are pseudo-monotone operators and to apply the abstract results for that
type of operators. This approach is used in Chapter 4 of [12]. Since we are mainly
interested in how to approximate (P1) and (P2), we use the Galerkin method. In
contrast to the approach presented in [12], where only the space V is discretized
(semi-discretization), here we present the full approximation of both problems,
introducing also suitable approximations of Y1 and Y2, respectively.

Our aim is now to develop a numerically available approximation model for
the problem (P1) (we shall now consider only problem (P1), since (P2) can be
treated in a similar way) and to prove that the solutions of this model tend to the
solutions of the continuous problem. We shall show that the convergence is valid
only for subsequences. This a consequence of the nonuniqueness of the solutions
of the considered nonmonotone continuous and discrete problems. For simplicity
we shall study in details only the approximation of the term

R

0
X � v dx, because

the treatment of the bilinear form a and the linear form g is standard (see [2]).
Let h 2 (0; 1) be a discretization parameter. Since we use a finite element

method, h is related to the mesh size of partitions of
 and
0 used for the construc-
tions of finite-dimensional approximations Vh and Yh of V and Y1, respectively.
We use the same discretization parameter h for both approximations.

First let us consider the space V . Let fVhgh2(0;1), Vh � C(
;RM ), be a family
of finite-dimensional subspaces of V . We denote by V 0

h the dual space of Vh, h�; �iV
h

the corresponding duality pairing and k � kV
h

the norm of Vh induced by this one
on V , i.e. kvhkVh = kvhkV for all vh 2 Vh. We shall assume that Vh, h 2 (0; 1),
are constructed in such a way that

8v 2 V 9fvhg; vh 2 Vh : vh ! v in V as h! 0 + : (8)

For example, Vh contains functions, components of which are piecewise polyno-
mial over some triangulation of 
.

The construction of Yh is more involved. The crucial point is, how to approxi-
mate the integral

R

0
X � v dx, i.e. which quadrature formula will be used for the
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numerical integration. Let us fix a quadrature formula
Z

0

f(x) dx �
m
hX

i=1

cihf(x
i
h); (9)

where cih are weights and xih 2 
0 are nodal points of the quadrature formula. We
shall assume that (9) is exact for all constant functions so that

Pm
h

i=1 c
i
h = mN (
0),

where mN is the Lebesgue measure in RN . Let us suppose that 
0 is such that the
following construction is possible: We define a partition Th of 
h, 
0 � 
h, such
that it consists of subsets Ki

h of 
h satisfying the following properties:
(i) 
h = [

m
h

i=1K
i
h;

(ii) h � maxi=1;::;m
h
fdiameter of Ki

hg;
(iii) int Ki

h\ int Kj
h = ; 8i 6= j;

(iv) Ki
h is closed, convex and has a nonempty interior for each i = 1; :::;mh;

(v) For each i = 1; :::;mh there is exactly one point xih 2 int Ki
h \
0;

(vi) mN ( int Ki
h \ 
0) = cih i = 1; :::;mh.

The finite element approximation Yh of Y1 will be defined as follows:

Yh = f f = (f1; :::; fM ) 2 L1(
0;RM ) : 9 ~f = ( ~f1; :::; ~fM ) : 
h ! RM ;

~fjjint Ki

h

is constant i = 1; :::;mh; j = 1; :::;M; f = ~f j
0g;

i.e. Yh contains all restrictions to 
0 of piecewise constant functions over Th. We
shall identify Yh with its dual Y 0

h. The duality pairing and the norm in Yh will be
the same as in Y1. We need also the space of the restrictions to 
0 of functions, the
components of which are piecewise continuous functions over the partition Th:

Xh = f f 2 L1(
0;RM ) : 9 ~f : 
h ! RM ;

~fjjint Ki

h

is continuous i = 1; :::;mh; j = 1; :::;M; f = ~f j
0g:

Let Ph be a linear mapping from Xh to Yh defined by means of

(Phf)(x) =

m
hX

i=1

f(xih)(Xint Ki

h

)(x); x 2 
0;

where Xint Ki

h

is the characteristic function of int Ki
h. Then we have

Z

0

MX
j=1

(Phf)j(x) dx =

m
hX

i=1

MX
j=1

cihfj(x
i
h); 8f 2 Xh; (10)

using the definition of the mapping Ph and (vi).
The following consistency condition between Vh and Yh is assumed to be

satisfied in what follows:

for any fvhg; vh 2 Vh such that vh * v (weakly) in V as h! 0 +

=) there exists a subsequence fvh0g � fvhg such that (11)

Ph0vh0 ! v in Y1 as h0 ! 0 + :
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We also suppose that the norm of the linear operator Ph is bounded uniformly
with respect to h:

kPhkL(V
h
;Y
h
) � C4: (12)

REMARK 3. In the case of the full discretization, considered here, the consistency
condition (11) replaces the compactness property of the restriction mapping r :
V ! Y1, which is essential when proving the existence result for (P1) in [12]. In
order to satisfy (11) and (12), the partitions used for the construction of Vh and Yh
has to be in a certain relation and also the nodesxih have to be appropriately chosen.
A particular case is presented in Section 5. For more details how to construct Th
and Ph, satisfying (i)–(vi) and (11),(12), respectively, we refer to [4],[5],[8],[10].

Now we are able to define the approximation of (P1) as follows:
8<
:

find uh 2 Vh and Xh(uh) 2 Yh such that
a(uh; vh) +

R

0
Xh(x) � (Phvh)(x) dx = hg; vhiV 8vh 2 Vh

and Xh(x) 2 @j((Phuh)(x)) a.e. in 
0

(P1)h

or equivalently
8<
:

find uh 2 Vh and Xh(uh) 2 Yh such that
a(uh; vh) +

Pm
h

i=1 c
i
hXh(x

i
h) � vh(x

i
h) = hg; vhiV 8vh 2 Vh

and Xh(x
i
h) 2 @j(uh(x

i
h)) i = 1; :::;mh

(P1)h

making use of (10). The main result of the paper is that (P1)h is solvable and that
its solutions tend on subsequences to solutions of (P1). More precisely we prove
the following theorem:

THEOREM 1. There exists at least one solution (uh;Xh(uh)) of (P1)h for any
h 2 (0; 1) and we can find a subsequence f(uh0 ;Xh0(uh0))g of f(uh;Xh(uh))g

such that uh0 converges strongly to u in V and Xh0(uh0) converges weakly to X in
Y1.

Moreover, (u;X ) is a solution of (P1).

REMARK 4. The counterpart of Theorem 1 holds also for the problem (P2) and
it can be proved in a similar way. The construction of finite-dimensional approx-
imation of Y2 can be done as previously. First we fix a quadrature formula used
for the approximation of the integral

R
�0
X � v ds. Then we define a partition Th of

�0, satisfying the properties (i)–(vi), finite-dimensional spacesXh, Yh and a linear
operator Ph satisfying the conditions (11) and (12) (e.g. in [4],[5] there have been
presented examples of operators Ph satisfying (11) and (12)) as for the problem
(P1). Thus the approximation of (P2) can be formulated as follows:
8<
:

find uh 2 Vh and Xh(uh) 2 Yh such that
a(uh; vh) +

R
�0
Xh(x) � (Phvh)(x) ds = hg; vhiV 8vh 2 Vh

and Xh(x) 2 @j((Phuh)(x)) a.e. in �0:

(P2)h
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3. Convergence Analysis for (P1)

In this section we shall prove Theorem 1. First we have to recall some definitions
and results which will be used [3].

DEFINITION 2. Let T be a set-valued mapping from a Banach space X to a
Banach space Y . Then T is said to be upper semicontinuous at x 2 X if the
following property holds: for all " > 0, there exists � > 0 such that

T (x0) � T (x) + "BY 8x0 2 x+ �BX ;

where BX , BY are the unit balls in X , Y , respectively.

PROPOSITION 1. Let f : X ! R be locally Lipschitz near a point x 2 X . Then
it holds:

(a) The function f�(x; z) is upper semicontinuous as a function of (x; z) in
some neighbourhoodN (x) of x, i.e.

lim sup
y0!y;z0!z

f�(y0; z0) � f�(y; z);

where y; y0 2 N (x).
(b) @f(x) is a nonempty, convex, weak �-compact subset ofX 0 and kykX0 � K

for every y 2 @f(x), where K is a Lipschitz constant of some neighbourhood
N (x) of x.

(c) Let xi and yi be sequences inX andX 0 such that xi converges to x, and that
y is a cluster point of yi 2 @f(xi) in the weak �–topology. Then y 2 @f(x).

(d) If X is finite-dimensional, then @f is upper semicontinuous at x.
(e) For every z in X , one has

f�(x; z) = maxfhy; ziX : y 2 @f(x)g:

Let us also state a consequence of Kakutani fixed point theorem [1], which will be
the main tool for proving Theorem 1.

THEOREM 2. LetX be a finite-dimensional Banach space,T a coercive and upper
semicontinuous set-valued mapping from X to X 0 such that Tx is a nonempty,
bounded, closed, convex subset ofX 0 for each x 2 X . Then the rangeR(T ) = X 0.

A set-valued operator T : X ! X 0 is said to be coercive on a set Z � X (with
respect to 0) if

there exists a function c : R+ ! R with lim
r!1

c(r) =1 such that

hy; xiX � c(kxkX )kxkX for all x 2 Z and y 2 Tx:

Proof of Theorem 1. The proof of Theorem 1 consists of several steps.
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(1�) First we show that (P1)h has a solution. We apply Theorem 2 to the operator
equation

0 2 Ahuh � gh + Thuh; (13)

where Ah is the operator from Vh to V 0
h defined by hAhvh; whiVh = a(vh; wh) for

all vh; wh 2 Vh, gh is an element of V 0
h defined by hgh; vhiVh = hg; vhiV for all

vh 2 Vh and Th the set-valued operator from Vh to V 0
h defined by

Thvh = f wh 2 V 0
h : 9zh 2 Yh such that wh � (PhjVh)

�zh

and zh(x) 2 @j((Phvh)(x)) a.e. in 
0g;

where (PhjVh)
� means the transpose of PhjVh .

From Proposition 1 (b) and the fact that (PhjVh)
� : Yh ! V 0

h is a linear mapping
it follows that Thvh is a nonempty, bounded, closed, convex subset of V 0

h for all
vh 2 Vh. To see that Th is upper semicontinuous we change the notation. Let
f'

j
hg

n
h

j=1, nh = dim Vh, be a basis of Vh. Let us make the identifications Vh � Rn
h

and Yh � [RM ]mh , where mh is the number of the nodal points of the quadrature
formula (9). Then the mapping Th can be identified with a mapping T from Rn

h

to Rn
h :

Tv = f w 2 Rn
h : 9z = (z1; :::; zm

h
) 2 [RM ]mh such that

w = (P)�z and zi 2 @j((Pv)i) i = 1; :::;mhg;

where P = (Pij) is an mh�nh–matrix, the elementsPij of which belong to RM

and are defined by

Pij = (Ph'
j
h)(x

i
h); i = 1; :::;mh; j = 1; :::; nh:

Thus, T is a composite function of a linear mapping (P)� and the set-valued
mapping v 7! (@j((Pv)1); :::; @j((Pv)m

h
)), components of which are upper

semicontinuous functions due to Proposition 1 (d). Then using the fact that (P)�

is a linear continuous mapping from [RM ]mh to Rn
h , the upper semicontinuity

is still preserved as follows from Definition 2. This implies that also Th is upper
semicontinuous as a mapping from Vh to V 0

h. Moreover, since the operator Ah is
continuous, the mappingAh(�)�gh+Th(�) is upper semicontinuous from Vh to V 0

h.
On the other hand as the operatorAh(�)�gh is single-valued thenAhvh�gh+Thvh
is a nonempty, bounded, closed, convex subset of V 0

h for all vh 2 Vh.
Thus it remains only to show that the above mentioned operator is coercive. Let

vh 2 Vh and wh 2 Thvh. Then there exists zh 2 Yh such that wh = (PhjVh)
�zh

and zh(x) 2 @j((Phvh)(x)) a.e. in 
0. Using (1) and (12) we get

hwh; vhiVh = h(PhjVh)
�zh; vhiVh = hzh; PhvhiYh

= �

Z

0

zh(x) � (�(Phvh)(x)) dx
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� �

Z

0

j�((Phvh)(x);�(Phvh)(x)) dx (14)

� �

Z

0

(C1 + C2j(Phvh)(x)j
q) dx � �Ĉ1 � Ĉ2kPhvhk

q
Y
h

� �Ĉ1 � ~C2kvhk
q
V
h

:

From this and (4) we obtain that

hAhvh � gh + (PhjVh)
�zh; vhiVh = hAhvh � gh; vhiVh + hzh; PhvhiYh

� �kvhk
2
V
h

� kghkV 0

h

kvhkVh � Ĉ1 � ~C2kvhk
q
V
h

implying the coerciveness of Ah(�) � gh + Th(�). Thus the proof of this part is
complete, because (13) is equivalent to (P1)h.

(2�) Now, we prove that fuhg, fXhg are bounded in the corresponding function
spaces. Let (uh;Xh(uh)) be solutions of (P1)h, h 2 (0; 1).

Taking the definition of (P1)h and substituting vh = uh into it we get

a(uh; uh) = �

Z

0

Xh(x) � (Phuh)(x) dx+ hg; uhiV : (15)

Because Xh(x) 2 @j((Phuh)(x)) a.e. in 
, we can use (1) and (12) as in (14)
to get

�

Z

0

Xh(x) � (Phuh)(x) dx � C 0
1 + C 0

2kuhk
q
V :

Substituting this into (15) and using (4) we see that

�kuhk
2
V � C 0

1 + C 0
2kuhk

q
V + kgkV 0kuhkV ;

from which the boundedness of fuhg in V follows.
Due to (2) the Y1-norm of Xh is bounded, i.e.,Z


0

jXh(x)j
2 dx � C:

(3�) Now, we prove that cluster points of fuhg and fXhg satisfy (P1).
Since V and Y1 are Hilbert spaces, there exist subsequences fuhg and fXhg (in

the sequel we shall denote subsequences by the same symbol as the original ones)
and elements u 2 V and X 2 Y1 such that

uh * u in V as h! 0+; (16)

Xh * X in Y1 as h! 0 + : (17)

First we show that u and X satisfy the equation

a(u; v) +

Z

0

X � v dx = hg; viV (18)
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for all v 2 V . Let v 2 V be given. Due to (8) there exists a sequence fvhg, vh 2 Vh
such that vh ! v in V as h! 0+. Then by applying (11), (16), (17) it is obvious
that the following relations hold

a(uh; vh)! a(u; v);Z

0

Xh � Phvh dx!
Z

0

X � v dx;

hg; vhiV ! hg; viV ; as h! 0+;

from which (18) follows.
It remains to show that

X (x) 2 @j(u(x)) a.e. in 
0: (19)

First we use (11) to get a subsequence of fuhg for which fPhuhg converges
strongly to u in Y1. Then passing to a subsequence if necessary we may assume
that the sequence fPhuhg converges pointwisely to u a.e. in 
0.

Let � 2 L1(
0;RM ) be given. ThenZ

0

X (x) � �(x) dx = lim
h!0+

Z

0

Xh(x) � �(x) dx

�(1) lim sup
h!0+

Z

0

j�((Phuh)(x);�(x)) dx

�(2)
Z

0

lim sup
h!0+

j�((Phuh);�(x)) dx

�(3)
Z

0

j�(u(x);�(x)) dx;

which implies (19), because � was arbitrary. For the completeness let us justi-
fy the steps (1)–(3). The first step is a consequence of the inclusion Xh(x) 2

@j((Phuh)(x)) a.e. in 
0 and the definition of the generalized gradient. The sec-
ond step is due to the Fatou’s lemma and the following arguments: Because of
(2) any element � from @j((Phuh)) the inequality j�j � C3(1 + j(Phuh)(x)j)

holds, we can deduce from Proposition 1 (e) that j�((Phuh)(x);�(x)) � C3(1 +

j(Phuh)(x)j)j�(x)j. Moreover, we know that Phuh converges strongly in Y1 and
pointwisely a.e. in 
0 to u. Thus we can apply the Fatou’s lemma to get the
inequality (2). The third step is due to the upper semicontinuity of the generalized
directional derivative (see Proposition 1 (a)) and the pointwise convergence of
Phuh to u.
(4�) It remains to prove the strong convergence of fuhg to u. Because of (8), there
exists f�uhg, �uh 2 Vh such that �uh ! u in V as h ! 0+. Using (4) and the fact
that uh is a solution of (P1)h we see that

�kuh � �uhk
2 � a(uh � �uh; uh � �uh) = hg; uh � �uhiV

�

Z

0

Xh(x) � (Ph(uh � �uh))(x) dx� a(�uh; uh � �uh): (20)
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Passing to a subsequence if necessary, the right handside of (20) tends to zero
as h ! 0+ due to (11). Using triangle inequality wet get the strong convergence
of the sequence fuhg to u in V .

4. Constrained Vector–Valued Hemivariational Inequalities

In this section we shall consider slightly modified problems, namely the so called
constrained vector-valued hemivariational inequalities. The mathematical formu-
lation of these problems is similar to the formulation of the unconstrained hemi-
variational inequalities (P1) and (P2) except we have now a nonempty, closed,
convex subset K of V in which we look for solutions, i.e.

8<
:

find u 2 K and X (u) 2 Y1 such that
a(u; v � u) +

R

0
X � (v � u) dx � hg; v � uiV 8v 2 K

and X (x) 2 @j(u(x)) a.e. in 
0

(CP1)

or
8<
:

find u 2 K and X (u) 2 Y2 such that
a(u; v � u) +

R
�0
X � (v � u) ds � hg; v � uiV 8v 2 K

and X (x) 2 @j(u(x)) a.e. in �0:

(CP2)

REMARK 5. It would be possible to consider problems (P1),(P2) from Section 3
as special cases of (CP1),(CP2), respectively. For the convenience of readers we
prefer to present results separately.

As previously these can be transformed into the equivalent operator inclusions:

find u 2 V such that 0 2 Au� g + T1u+ @IK(u); (CP1)

or
find u 2 V such that 0 2 Au� g + T2u+ @IK(u); (CP2)

where @IK(u) is the generalized gradient of the indicator function IK of K . Since
K is nonempty, closed and convex, @IK coincides with the subdifferential of the
convex function IK . Moreover, @IK is a maximal monotone operator (see [18]).

Let us start to study the approximation of these problems. We shall formulate
exactly the same assumptions as for problems (P1) and (P2) (as before we shall
consider (CP1) only because the treatment of (CP2) is similar). Instead of Vh we
have to construct the approximation of the convex set K , but this can be done in a
standard way (see [4],[5],[6]):

Let fKhg be a family of nonempty, closed convex subsets of Vh (not necessarily
Kh � K) satisfying

8v 2 K 9fvhg; vh 2 Kh : vh ! v in V as h! 0+; (21)

fvhg; vh 2 Kh : vh * v in V as h! 0+ =) v 2 K: (22)
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The approximation of (CP1) reads as follows:
8>><
>>:

find uh 2 Kh and Xh(uh) 2 Yh such that
a(uh; vh � uh) +

R

0
Xh � (Phvh � Phuh) dx

� hg; vh � uhiV 8vh 2 Kh

and Xh(x) 2 @j((Phuh)(x)) a.e. in 
0:

(CP1)h

Next we shall prove:

THEOREM 3. There exists at least one solution (uh;Xh(uh)) of (CP1)h for any
h 2 (0; 1). We can find a subsequence f(uh0 ;Xh0(uh0))g of f(uh;Xh(uh))g such
that uh0 converges strongly to u in V and Xh0(uh0) converges weakly to X in Y1.

Moreover, (u;X ) is a solution of (CP1).

REMARK 6. The counterpart of Theorem 3 holds for the problem (CP2), as well.

The solvability proof of (CP1)h is based on the following existence result (see [1])
for the upper semicontinuous set-valued operators:

THEOREM 4. Let K be a closed, convex subset of a reflexive Banach space X
such that 0 2 K , and let F be a finite-dimensional subspace of X . Let T be a
set-valued mapping from K \ F into X 0 such that for each x 2 K \ F , Tx is
a nonempty, bounded, closed and convex subset of X 0. Suppose that T is upper
semicontinuous from K \ F to the weak topology of X 0, and that T is coercive on
K \ F . Then there exists x0 2 K \ F and y0 2 Tx0 such that for all x 2 K \ F ,

hy0; x� x0iX � 0: (23)

Let us assume that X is a finite-dimensional Banach space. Then the following
corollary of Theorem 4 holds:

COROLLARY 1. Let K be a closed, convex subset of the finite-dimensional
Banach space X such that 0 2 K . Let T be a set-valued mapping from K into X 0

such that for each x 2 K , Tx is a nonempty, bounded, closed and convex subset of
X 0. Suppose that T is upper semicontinuous from K to X 0, and that T is coercive
on K . Then there exists x0 2 K and y0 2 Tx0 such that for all x 2 K ,

hy0; x� x0iX � 0:

REMARK 7. Corollary 1 holds true also in the case when the assumptions that
0 2 K and T is coercive on K are replaced by the following ones: There is an
element �x 2 K such that T is coercive with respect to �x on K , i.e. there exists
a function c : R+ ! R with limr!1 c(r) = 1 such that for all x 2 K and
y 2 T (x) it holds: hy; x � �xiX � c(kxkX )kxkX . This can be shown by applying
Corollary 1 to the mapping T�x(x) = T (x+ �x) defined on the set K�x = K � �x.
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Proof of Theorem 3. The proof will be done in several steps. Let us first fix some
u0 2 K and a sequence fuh0g, uh0 2 Kh such that uh0 ! u0 in V , which exists due
to (21).
(1�) First we prove the existence of a solution of (CP1)h. The idea is to apply
Corollary 1 and Remark 7 to the set-valued mappingAh(�)�gh+Th(�) introduced
in the proof of Theorem 1. We have already shown that this mapping is upper
semicontinuous andAhvh�gh+Thvh is a nonempty, bounded, closed and convex
subset of V 0

h for all vh 2 Vh. It remains to show that Ah(�)� gh+Th(�) is coercive
on Kh with respect to uh0 . Let vh 2 Vh and wh 2 Thvh. Then there exists zh 2 Yh
such that wh = (PhjVh)

�zh and zh(x) 2 @j((Phvh)(x)) a.e. in 
0.
Using (1), (2) and (12) we get

hwh; vh � uh0 iVh = h(PhjVh)
�zh; vh � uh0 iVh = hzh; Phvh � Phu

h
0 iYh

= �

Z

0

zh(x) � (�(Phvh)(x)) dx�
Z

0

zh(x) � (Phu
h
0 )(x) dx

� �

Z

0

j�((Phvh)(x);�(Phvh)(x)) dx

�

Z

0

C3(1 + jPhvh(x)j)j(Phu
h
0 )(x)j dx

� �

Z

0

(C1 + C2j(Phvh)(x)j
q) dx (24)

�(

Z

0

(C3(1 + jPhvh(x)j))
2 dx)

1
2 (

Z

0

jPhu
h
0 (x)j

2 dx)
1
2

� �Ĉ1 � Ĉ2kPhvhk
q
Y
h

� C(1 + kPhvhkYh)kPhu
h
0kYh

� �Ĉ1 � ~C2kvhk
q
V
h

� Ĉ(1 + kvhkVh)ku
h
0kVh :

From (3), (4) and (24) we obtain that

hAhvh � gh + (PhjVh)
�zh; vh � uh0 iVh

= hAhvh � gh; vh � uh0 iVh + hzh; Phvh � Phu
h
0 iYh

� �kvhk
2
V
h

� kghkV 0

h

(kvhkVh + kuh0kVh)�mkvhkVhku
h
0kVh

�Ĉ1 � ~C2kvhk
q
V
h

� Ĉ(1 + kvhkVh)ku
h
0kVh

implying the coerciveness of Ah(�) � gh + Th(�) on Kh with respect to uh0 . Then
the existence a solution of (CP1)h follows from Corollary 1 and Remark 7. The
proof of this part is now complete.
(2�) Next we prove that fuhg and fXhg are bounded in V and Y1, respectively.
Let (uh;Xh(uh)) be solutions of (CP1)h, h 2 (0; 1). Substituting vh = uh0 into the
definition of (CP1)h we obtain

a(uh; uh) � a(uh; u
h
0 ) +

Z

0

Xh(x) � ((Phu
h
0 )(x)

�(Phuh)(x)) dx + hg; uh0 � uhiV : (25)
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Taking into account that Xh(x) 2 @j((Phuh)(x)) a.e. in 
0, we can deduce as in
(24) that

�

Z

0

Xh(x) � ((Phuh)(x)� (Phu
h
0h)(x) dx

� C 0
1 + C 0

2kuhk
q
V +C 0(1 + kuhkV )ku

h
0kV :

Substituting this to (25) and using (4) we see that

�kuhk
2
V � mkuhkV ku

h
0kV + C 0

1 + C 0
2kuhk

q
V

+C 0(1 + kuhkV )ku
h
0kV + kgkV 0(kuh0kV + kuhkV );

which implies the boundedness of fuhg in V . The boundedness of fXhg in Y1 can
be shown in a similar way as in the proof of Theorem 1.

(3�) The fact that cluster points of fuhg and fXhg satisfy (CP1) can be shown
exactly in the same way as previously. The only thing is to note that if we have a
sequence fuhg converging weakly to u in V , a sequence fvhg converging strongly
to v in V and a sequence fXhg converging weakly to X in Y1, we have (passing to
subsequences if necessary):

lim sup
h!0+

a(uh; vh � uh) � a(u; v � u);

Z

0

Xh � (Phvh � Phuh) dx!
Z

0

X � (v � u) dx;

hg; vh � uhiV ! hg; v � uiV ;

as h! 0+.

(4�) Also the strong convergence of fuhg can be proved in a similar way as in
the proof of Theorem 1. The only modification is that we use (21) (not (8)) to get
a sequence f�uhg, �uh 2 Kh such that �uh ! u in V as h! 0+.

5. Applications

Here we present one example, the approximation of which is based on results of
the previous sections.

Nonmonotone skin friction in plane elasticity (see [12]): Let us assume a plane
elastic body, represented by a polygonal domain 
 � R2 with the Lipschitz
boundary �. The equilibrium state of 
 is described by the system of equilibrium
equations:

�ij;j + Fi = 0 in 
; i = 1; 2; (26)

where the stress tensor � = (�ij)
2
i;j=1 is related to the linearized strain tensor

" = ("ij)
2
i;j=1 by means of a linear Hooke’s law

�ij(u) = cijkl"kl(u); where "kl(u) =
1
2
(
@uk

@xl
+

@ul

@xk
) (27)
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and cijkl are elasticity coefficients, satisfying the usual symmetry and ellipticity
conditions in 
. For simplicity let us assume that displacements u = (u1; u2) are
equal to zero on �.

In order to describe the skin effects, we split F into two parts: F = F + F .
The part F is given a priori and represents an external loading on 
. The part
F (possibly multivalued) is induced by skin effects, arising on 
0, 
0 �� 
.
Therefore F = 0 on 
n
0. Let us consider that the multivalued constitutive
(reaction-displacement) law is expressed in the form

�F (x) 2 @j(u(x)) a.e. in 
0; (28)

where j : R2 ! R is a locally Lipschitz continuous function, satisfying (1) and
(2). The weak formulation of our problem, which is described by (26)- (28) reads
as follows:8><

>:
find u 2 (H1

0 (
))
2 and X 2 (L2(
0))

2 such that
(�(u); "(v))0;
 + (X ; v)0;
0 = (F ; v)0;
 8v 2 (H1

0 (
))
2

and X (x) 2 @j(u(x)) a.e. in 
0:

(29)

For the approximation of (29) we shall use the finite element technique. Let
fThg, h ! 0+ be a regular family of triangulations of 
. With any Th the space
of piecewise linear functions will be associated:

Vh = fvh 2 (C(
))2 j vhjT 2 (P1(T ))
2 8T 2 Th; vh = 0 on �g:

On any triangle T 2 Th we shall consider the following quadrature formula:
Z
T

f(x) dx �
1
3
m2(T )(f(M

1T ) + f(M2T ) + f(M3T )); (30)

where m2(T ) is the area of T and M jT , j = 1; 2; 3 are the midpoints of the edges
of T . For simplicity let us assume that also 
0 is a polygonal domain such that

0 = [i2IT i, where I = fi j Ti 2 Th and int Ti \ 
0 6= ;g, i.e. 
0 is a union
of triangles, belonging to the original triangulation Th, the interior of which has
a nonempty intersection with 
0. Since 
0 is polygonal, the integration formula
(10) over 
0 is given by taking a sum of (30) over all T 2 I:

Z

0

f(x) dx �
X
T2I

1
3
m2(T )(f(M

1T ) + f(M2T ) + f(M3T )): (31)

Rearranging terms in (31), we finally obtain
Z

0

f(x) dx �
X
i

cihf(x
i
h);

where xih = M jT for some j = 1; 2; 3 and T 2 I , while cih = 1
3m2(T ) or

cih = 1
3(m2(T ) + m2(T

0)) if the corresponding xih is on @
0 or in the interior
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h
i xh

i
x

b)

T
T’

T
a)

Figure 1. a) ci
h
= 1

3(m2(T ) +m2(T
0)): b) ci

h
= 1

3m2(T ):

Ω

Ωh

0

b)

Ω

Ω
a)

Figure 2. Partitions Th and T 1
h

.

of 
0, respectively. Here T and T 0 are 2 adjacent triangles from I with xih as the
common midpoint (see Figure 1).

With any triangulation Th we associate another partition T 1
h of 
, which can be

constructed as follows:
(i) it consists of quadrilaterals, nodes of which are vertices of 2 adjacent triangles

T 0; T 2 Th and their centre of gravities.
(ii) triangles in the case, when one edge of T 2 Th is on the boundary of 
.
So we can write


 = [T2T
h
T = [Q2T 1

h

Q;

where Q’s are elements of the new partition T 1
h (see Figure 2a the partition Th and

Figure 2b the partition T 1
h ).

Denote by 
h = [Q, where the union is taken over all Q’s, the interior of
which has a nonempty intersection with 
0. These Q’s will play the role of the
subsets Ki

h introduced in Section 2, and used when defining the space Yh. Since
by assumption dist (@
0; @
) > 0, each Ki

h contains one integration point xih in
its interior. It is readily seen that (i)–(vi) of Section 2 are satisfied. It is also easy
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to show (see [8], [10]) that in this case conditions (11) and (12) are satisfied. Since
at the same time, condition (8) is satisfied for our system fVhg, the corresponding
discrete problems solved on Vh � Yh are close on subsequences to the continuous
one.

REMARK 8. For the completeness let us sketch shortly how one can prove (11).

kPhvh � vhk
2
Y1

=
X
Q2T 1

h

X
i=1;2

Z
Q\
0

j(Phvh)i(x)� (vh)i(x)j
2 dx

�
X
Q2T 1

h

X
i=1;2

Z
Q\
0

h2jr(vh)i(x)j
2 dx

� h2kvhk
2
H1(
0;R2):

Then, because of vh * v in V and the triangle inequaity we see immediatelty that
fPhvhg converges strongly to v in Y1 as h! 0+.

REMARK 9. There is an alternative way how to construct Yh. The sets Ki
h used

for the definition of Yh are formed now by polygons, constructed as follows: Let
Ni be a node of Th. We define Ki

h as a polygon bounded by segments, joining
centroids of all T 2 Th, having Ni as a common vertex, to the midpoint of the
edges, containing Ni. Such construction is described in [4],[5].

REMARK 10. Let us shortly describe the numerical realization of the discretized
nonmonotone skin friction problem. Using the notations introduced in the proof of
Theorem 1 we can rewrite it into the matrix form as follows (as the discretization
parameter h is fixed, we skip it):

8><
>:

find u = (u1; :::; un) 2 Rn and s = (s1; :::; sm) 2 [RM ]m

such that (Au;v)Rn + (s;Pv)[RM ]m = (g;v)Rn 8v 2 Rn

and si 2 ci@j((Pu)i) i = 1; :::;m;
(P)

whereA = (hAh'
i; 'jiV

h
)ni;j=1,g = (hgh; '

jiV
h
)nj=1 2 Rn and (�; �)Rn , (�; �)[RM ]m

denote the scalar products of Rn and [RM ]m, respectively. Now due to the sym-
metry of the elasticity coefficients, the matrix A is also symmetric. Therefore one
possibility how to solve (P) is tranform it to a problem of finding local minima
or more generally substationary points of the corresponding potential function
L : Rn ! R, i.e. points w 2 Rn such that 0 2 @L(w), where L is defined by

L(v) =
1
2
(Av;v)Rn � (g;v)Rn +	(v);
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where

	(v) =
mX
i=1

cij((Pv)i):

It is possible to show that all substationary points, especially all local minima, of
L are also solutions of the problem (P) (see [8],[10]). To find the local minima we
can use optimization methods for nonsmooth, nonconvex functions (see [11]), as
the function L is nonsmooth and nonconvex in general. The other possibility how
to solve (P) is to use an iterative method where the nonmonotone problem (P) is
approximated by a sequence of monotone subproblems which can be solved more
effectively (see [17]).
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