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Abstract. Inthis paper we devel op afinite element approximation for vector-valued hemivariational
inequalities. This class of hemivariational problems was introduced in [12],[13]. We study two
different problems: unconstrai ned one and constrai ned onewith anonempty, closed, convex constraint
st K.

We shall show firstly that the discrete problems are solvable by using consequences of Kakutani
fixed point theorem and secondly that the solutions of the discrete problems are cl ose on subsequences
to the continuous ones.
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1. Introduction

Hemivariational inequalities (HVI) introduced by Panagiotopoulos [15]-{17] can
be considered as a generalization of variational inequalities. By means of them,
problems with nonmonotone and multivalued constitutive laws can be formulated
and solved. For the mathematical theory and the applications of (HVI) we refer to
[12],[17] and the extensive bibliographies therein.

In this paper we shall present a finite element approximation of vector-valued
(HV1) being a straightforward extension of the approximation of scalar-valued
(HV1) presented in [7]-{10]. A similar type approximation model has been used
also in [4],[5] for the dlliptic variational inequalities of the second kind. But
due to the nonmonotone nature of (HV1) the treatment of our problem is more
involved. The outline of this paper isasfollows. In thefirst section we shall present
vector-valued (HVI) involving a nonmonotone multivalued relation in some part
of adomain © ¢ RY (problem (P1)) or on some part of the boundary of Q
(problem (P2)), and state sufficient conditions guaranteeing their solvability. For
the proofs of the existence results we refer to [12],[13]. Then we analyze a finite
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element approximation for the problem (P1) only, because the problem (P2) can
be treated in asimilar way. In the second section we show that there exists at least
one solution of the approximation problem by using a consequence of Kakutani
fixed point theorem presented [1]. Then we show that the solutions of the discrete
problems tend on subsequencesto the solutions of the continuous one. In the third
section we consider the approximation of vector-valued (HV1) having anonempty,
convex, closed constraint set. For this problem we shall prove the same results
as for the unconstrained one. In the last section we present an example of vector-
valued (HV1), anonmonotone skin friction in plane elasticity, and discuss how its
approximation can be constructed.

2. Statement of the Problem

Let @ ¢ R be a bounded domain with Lipschitz boundary T. Let V be a
real Hilbert space equipped with the norm || - ||y, V' the dual space of V' with
the norm || - ||y» and (-, )y the corresponding duality pairing. We shall divide
our considerations into two different cases. Firstly we shall study (HVI) having a
nonmonotone multival ued condition on asubdomain g of ©2 and then (HV1) given
by anonmonotone multivalued condition on someset I'g openin I'. In applications
in mechanics of solids the Hilbert space V' istypically asubspace of H(Q; RM).
Finally let us denote Y, = L?(Qo; RM) and Y> = L?(T'o; RM). We shall identify
Y1, Y with their dual spacesYy, Y;, respectively. In Y7 and Y, we use asthe duality
pairings the standard L?-inner products, i.e.

/ y(z) - z(z) dz = Qog‘iyi(x)zi(x)dx,
/ y(z ds—/roiyi(x)zi(x)ds,

where y = (y1,...,ynm) and z = (21, ..., 2p), and the norms are the standard
L?-norms induced by the above inner products.

For describing the nonmonaotone multi-valued relations we introduce a locally
Lipschitz continuous function j : RM — R. Let usfirst define what we mean by
the generalized directional derivatives and the generalized gradients (in Clarke's
sense) of alocally Lipschitz continuous function [3]:

DEFINITION 1. Let X be aBanach spaceand f : X — R alocally Lipschitz
continuous near apoint z € X. The generalized directional derivative of f at = in
the direction z is defined as follows:

fo(!L",Z): IImSUp f(y+tz)_f(y)
y—x,t—0+ t
The generalized gradient of f at z, denoted 0 f (), isthe subset of X’ given by

of(x)={ye X' f°(z;2) > (y,2)x Vze X}.
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Let us turn back to our problem. The function j is supposed to satisfy firstly
the generalized sign condition which is expressed by means of the generalized
directional derivative of j. It reads as follows:

56 =€) < CL+ Cal¢)? V¢ € RM, 1)

where C7 and C, are positive constantsindependent of £ and 1 < ¢ < 2. Secondly,
the function 5 fulfills the following growth condition expressed by means of the
generalized gradient of j:

n € 0j(§) = Inl < C3(1+ [£]), 2

where C3 isapositive constant independent of £ and . We assumethat the bilinear
forma : V x V — R sdtisfiesthe standard continuity and coercivness conditions:

la(v,w)| < mlvlv]wly  Yv,weV; 3
a(v,v) > aljvl|2 Yo eV, 4)

where m and « are positive constants. Let g be an element of V.
By avector-valued hemivariational inegquality we mean the problem

a(u,v) + Jo, X -vdz = (g,0)y Vv eV (P1)

{ findu € V and X (u) € Y1 such that
and X(x) € 0j(u(z)) aeinQo

or

a(u,v) + [p, X -vds = (g,v)y YweEV (P2)

{ findu € V and X (u) € Y3 such that
and X (z) € 0j(u(z)) ae.inTy.

REMARK 1. A simple example of j which satisfies (1) and (2) is a minimum
function of two convex quadratic functions, i.e.,

(€)= min{fi(¢), )} V¢ e RM.

Now, we see easily that j satisfies (2), because its generalized gradient 95 ()
at apoint ¢ belongs to the convex hull of {V f;(¢) : i = 1,2}. Moreover, since
§O€,m) = max{¢* -1 € € 9j(¢)} and thefact that V f1(¢) - €, V f2(¢) - € > 0,
we see that

70(& —€) <max{€* - (=€) 1 & = AV f1() + (1= V)V f2(6), A € [0,1]}
<0

implying (1).
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REMARK 2. Now we explain the relation between problem (P1) and abasic scalar
hemivariational inequality introduced by Panagiotopoulos (for details see [16]).
Let b beafunction from R to R such that:

b€ LiSs(R); (5)
there exists ¢ > 0 such that
€SS SUP; (oo, —£)0(E) < 0 < €SSinfecz 0)b(E). (6)

For any ¢ > O we define two auxiliary functions:

ba(f) = eSSinf\T—f\geb(T)a 55(5) = eSSSUp\ng\gab(T)a

and letting ¢ — 0+ we get the upper and the lower bounds for a multivalued
functionb : R — R asfollows:

b¢) = lim b.(¢),  b(&) = lim b.(¢)

e—0+ e—0+
giving
b(&) = [b(£), B(E)]-

The basic scalar hemivariational inequality reads asfollows:

findu € V and X (u) € L*(Q0) N V' such that
a(u,v) + <X7U>V = <97U>V Yo eV,

X(z) € b(u(z))  aeinQgand

(X,0) = [o, X(z)v(z)dz Yo € VN L®(Qp).

(PL)

If the locally Lipschitz continuous function j : R — R isdefined by the relation

i = [ oo,
it is straightforward to see that the generalized gradient of j satisfies

dj(€) C b(¢), forany¢ € R. (7)
Thisimpliesthat every solution of (P1) isnow asolution of (P1)’, but not necessarily

viceversa. Wehavetheequality in (7), if thelimitslim,  ;, b(¢) andlim,_,_ b(¢)

exist for any ¢ € R. Itis easy to see that the condition (2) is more restrictive than
(5), but, on the contrary, the condition (6) is more restrictive than (1). Then, of
course, (P1) and (P1)" are equivalent provided that (2), (6) and the equality in (7)
hold. On the other hand, (P1) permits to treat the vector case, aswell.

Let ustransform (P1) and (P2) to equivalent operator inclusions, which read as
follows:
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findu € V suchthat 0 € Au — g + Thu; (P1)

or
findu € V suchthat 0 € Au — g + Tou, (P2)

where A is alinear operator from V' to V' defined by (Au, v)y = a(u,v) for all
u,v € V and Ty, T, are the set-valued operators from V to V' defined by

Tiw = {w € L?(Qo; RM) : w(z) € dj(v(z)) ae.inQo};
Tow = {w € L*To; RM) : w(z) € dj(v(x)) ae.inTy}.

To provethat (P1) or (P2) hasasolution one can use, e.g. the Galerkin approach
presented in Chapter 5 of [12]. Inthiscaseit isnatural to usetheformer formulation
of the problems. The other possibity is to prove that A(-) — g + T3(-) or A(-) —
g + T»(+) are pseudo-monotone operators and to apply the abstract results for that
type of operators. This approach is used in Chapter 4 of [12]. Since we are mainly
interested in how to approximate (P1) and (P2), we use the Galerkin method. In
contrast to the approach presented in [12], where only the space V' is discretized
(semi-discretization), here we present the full approximation of both problems,
introducing also suitable approximations of Y; and Y5, respectively.

Our aim is now to develop a numerically available approximation model for
the problem (P1) (we shall now consider only problem (P1), since (P2) can be
treated in a similar way) and to prove that the solutions of this model tend to the
solutions of the continuous problem. We shall show that the convergenceis valid
only for subsequences. This a consequence of the nonuniqueness of the solutions
of the considered nonmonotone continuous and discrete problems. For simplicity
we shall study in details only the approximation of the term f X - vdz, because
the treatment of the bilinear form a and the linear form ¢ is standard (see[2]).

Let h € (0,1) be a discretization parameter. Since we use a finite element
method, h isrelated to the mesh size of partitions of © and 2 used for the construc-
tions of finite-dimensional approximations V;, and Y;, of V' and Y3, respectively.
We use the same discretization parameter h for both approximations.

First let usconsider thespace V. Let {V; }he(0,1), Vi € C(€; RM), beafamily
of finite-dimensional subspacesof V. Wedenoteby V}/ thedual spaceof V;,, (-, -)v;,
the corresponding duality pairing and || - ||v;, the norm of V}, induced by this one
onV,i.e |loplly, = |lvsllv for al v, € V. We shall assumethat V;,, h € (0, 1),
are constructed in such away that

Vo eV Huopt, vp €V ivp, »vinVash — 0+. (8)

For example, V}, contains functions, components of which are piecewise polyno-
mial over some triangulation of Q.

The construction of Y}, is more involved. The crucia point is, how to approxi-
mate the integral fQO X - vdz, i.e. which quadrature formula will be used for the
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numerical integration. Let usfix aquadrature formula
mp ) )
| @)oY cisiah), ©
o i=1

where ¢} are weightsand =, € Qo are nodal points of the quadrature formula. We
shall assumethat (9) isexact for all constant functionsso that 37", ¢t = mn (Q0),
where m y isthe Lebesgue measurein RV . Let us suppose that Qg is such that the
following construction is possible: We define a partition 73, of €2, Qo C €y, such
that it consists of subsets K, of (2, satisfying the following properties:
() &, = UL K]
(i) h > maX;—1,..m, {diameter of K} };
(iii) int Kjnint K = 0 Vi # 5;
(iv) K} isclosed, convex and has a nonempty interior for each: = 1, ..., mp;
(v) For eachi = 1, ...,m, thereis exactly one point i € int K} N Qo;
(Vi) mpy(int K;n Qo) = cp,i=1..,my.
The finite element approximation Y}, of Y1 will be defined asfollows:
Vi, ={ f=(f1,. fu) € L®(Q; RM) : 3f = (f1, ..., far) 1 Qp — RM,
Filint Ki isconstanti = 1,...,mp, 5 =1,.... M, f = fla,}»
i.e. Y} contains all restrictions to €2 of piecewise constant functions over 7. We
shall identify Y}, with its dual Y. The duality pairing and the norm in Y}, will be

the same asin Y1. We need also the space of the restrictions to Qg of functions, the
components of which are piecewise continuous functions over the partition 7y:

X, ={ feL®QoRM):3f:Q, - RM,
Filint K iscontinuousi = 1,...,myp, j = 1,.., M, f = Flaok-
Let P, be alinear mapping from X, to Y}, defined by means of
mp,
(th)(m) = Zf(%)(xlnt K;L)(:E)a TE QO?
i=1

where Xjnt Ki is the characteristic function of int K. Then we have

M my M ) .
| S Paf)itarde =30 S chfslat), VI € X (10
Qo j=1 i=1j=1

using the definition of the mapping P}, and (vi).
The following consistency condition between V), and Y}, is assumed to be
satisfied in what follows:
forany {v,}, v, € V}, suchthat v, — v (weskly) inV ash — 0+
— there exists a subsequence {vy } C {vy} such that (1)
Py —vinYy ash' —0+.
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We also suppose that the norm of the linear operator P, is bounded uniformly
with respect to h:

1 Prll v, vi) < Ca (12)

REMARK 3. In the case of the full discretization, considered here, the consistency
condition (11) replaces the compactness property of the restriction mapping r :
V' — Y1, which is essential when proving the existence result for (P1) in [12]. In
order to satisfy (11) and (12), the partitions used for the construction of 1}, and Y},
hasto bein acertain relation and also the nodes ;. haveto be appropriately chosen.
A particular case is presented in Section 5. For more details how to construct 7y,
and P, satisfying (i)—(vi) and (11),(12), respectively, we refer to [4],[5],[8],[10].

Now we are able to define the approximation of (P1) asfollows:

find uy, € V;, and X}, (up,) € Y}, such that
{ a(un, vn) + fo, Xn(T) - (Phon)(7) dz = (g,vn)v  Yop € V), (PD)
and Xh(x) € 8]((Phuh)(x)) ae.in Qg

or equivalently

find uy, € V}, and Xh (uh) E Y. SJCh that
alup, vp) + 02 e Xn(2}) - on(2)) = (g,on)v Yop €V, (P
and X, (z}) € 0j(up(x})) i=1,..,my

making use of (10). The main result of the paper is that (P1);, is solvable and that
its solutions tend on subsequences to solutions of (P1). More precisely we prove
the following theorem:

THEOREM 1. There exists at least one solution (up,, X, (up)) of (P1), for any
h € (0,1) and we can find a subsequence {(up, Xp (un))} of {(un, Xn(up))}
such that uy,, convergesstrongly to w in V- and A}, (uy) convergesweakly to X' in
Y1.

Moreover, (u, X') isa solution of (P1).

REMARK 4. The counterpart of Theorem 1 holds also for the problem (P2) and
it can be proved in a similar way. The construction of finite-dimensional approx-
imation of Y5 can be done as previously. First we fix a quadrature formula used
for the approximation of the integral fFO X - v ds. Then we define a partition 7;, of
"o, satisfying the properties (i)—(vi), finite-dimensional spaces X}, Y, and alinear
operator P, satisfying the conditions (11) and (12) (e.g. in [4],[5] there have been
presented examples of operators P, satisfying (11) and (12)) as for the problem
(P1). Thusthe approximation of (P2) can be formulated as follows:

{ find uy, € V}, and Xh(uh) € Y}, such that

a(up,vp) + fro Xn(z) - (Ppop)(z)ds = (g,vp)y Yo, € V (P2);,
and Xy, (z) € 0j((Ppup)(z)) ae inTy.



24 M. MIETTINEN AND J. HASLINGER

3. Convergence Analysisfor (P1)

In this section we shall prove Theorem 1. First we have to recall some definitions
and results which will be used [3].

DEFINITION 2. Let T be a set-valued mapping from a Banach space X to a
Banach space Y. Then T is said to be upper semicontinuous at z € X if the
following property holds: for all € > 0, there exists § > 0 such that

T(z') C T(z) + eBy Vi' € x + 6By,

where By, By aretheunit balsin X, Y, respectively.

PROPOSITION 1. Let f : X — R belocally Lipschitznear a point z € X. Then
it holds:
(a) The function f°(x; z) is upper semicontinuous as a function of (z,z) in
some neighbourhood N (z) of z, i.e.
limsup f°(y";2") < f°(y; 2),
y' —y,2'—z
wherey,y’ € N(z).
(b) 9f (x) isanonempty, convex, weak x-compact subset of X’ and ||y||x» < K
for everyy € df(x), where K isa Lipschitz constant of some neighbourhood
N (z) of z.
(c) Letx; andy; besequencesin X and X’ suchthat x; convergesto z, and that
y isacluster point of y; € 9f(z;) in the weak x—topology. Theny € 9f ().
(d) If X isfinite-dimensional, then df is upper semicontinuousat .
(e) For every z in X, one has

fo(x;2) = max{(y, z)x 1y € Of (x)}.

L et us also state a consequence of Kakutani fixed point theorem [1], which will be
the main tool for proving Theorem 1.

THEOREM 2. Let X beafinite-dimensional Banach space, T'a coerciveand upper
semicontinuous set-valued mapping from X to X' such that Tz is a nonempty,
bounded, closed, convex subset of X’ for eachz € X. Thentherange R(T) = X'.
A set-valued operator 7' : X — X’ issaid to be coerciveonaset Z7 C X (with
respect to 0) if

there existsafunctionc : Ry — R with TILrQO ¢(r) = oo such that

(y,z)x > c(||z]|x)||z||lx fordlze Zandy € Tx.

Proof of Theorem1. The proof of Theorem 1 consists of several steps.
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(2°) First we show that (P1),, has a solution. We apply Theorem 2 to the operator
equation

0 € Apup, — g, + Thuyp, (13)

where A, isthe operator from V}, to V; defined by (Apvp,, wi)v, = a(vy,wy,) for
al vy, wy, € Vy, gy, isan element of v/ defined by (gp,, vn)v, = (g,vp)v for al
vy, € Vj, and Ty, the set-valued operator from V}, to V! defined by

Ty = { wp, € V}: : dzp, € Y}, such that wy, = (Ph|Vh)*Zh
and zp,(z) € 9j((Pyvp)(z)) ae. inQo},

where (P |y, )* meansthe transpose of P |y, .

From Proposition 1 (b) and thefact that (P |v;, )* : Y, — V) isalinear mapping
it follows that T},vy, is a nonempty, bounded, closed, convex subset of v}/ for all
vy, € V3. To see that T}, is upper semicontinuous we change the notation. Let
{@%}?@1, ny, = dimV}, beabasisof V},. Let usmaketheidentificationsV;, = R™»
and Y}, = [RM]™, where m,, is the number of the nodal points of the quadrature
formula (9). Then the mapping T}, can be identified with a mapping T from R™»
to R"h:

Tv={ w¢&R":3z= (21, ..., 2m,) € [RM]™ suchthat
w = (P)'zandz; € 0j((Pv);) i=1,...,mp},

where P = (P;;) isanmy, x nj—matrix, the elements P;; of which belong to RM
and are defined by

Pij = (Phgogl)(x}l), 1= 1, ...,mh,j = 1, ey N -

Thus, T is a composite function of a linear mapping (P)* and the set-valued
mapping v +— (95((Pv)1),...,05((PV)m, )), components of which are upper
semicontinuous functions due to Proposition 1 (d). Then using the fact that (P)*
is a linear continuous mapping from [RM]™» to R™, the upper semicontinuity
is still preserved as follows from Definition 2. This implies that also T}, is upper
semicontinuous as a mapping from V;, to V;/. Moreover, since the operator Ay, is
continuous, themapping A, (-) —gs +7}(+) isupper semicontinuousfrom V3, to V..
Ontheother hand asthe operator Ay, () — gy, issingle-valued then Ay, vy, — gp +Thvp
is a nonempty, bounded, closed, convex subset of V! for all vy, € V3.

Thusit remains only to show that the above mentioned operator is coercive. Let
v, € V, and wy, € Thvp. Then there exists z;, € Y}, such that wy, = (Ph|vh)*zh
and z,(x) € 9j5((Pyvp)(z)) ae. in Q. Using (1) and (12) we get

(whyvn)vy, = ((Pulv,)* 2hs vn)v, = (Zh, Pron)y,

_ _/ 2 (x) - (—(Pyvp)(z)) dz
Q

0
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> = [ § (P @)~ (Pron) (@) do (14)
0
> = [ (€14 Cal(Bron) (@) dr > ~C1 = Gl Puun
0
> —C1— Col|wal|{, -
From this and (4) we obtain that
(Anon — gn + (Pulvi,) 20, vn)vi, = (Anon — gy Un)vi, + (21, Pavn)y,
> allonll§, = lgnllv lonlly;, — C1 = Callonllf,
implying the coerciveness of A (:) — gn + Th(-). Thus the proof of this part is
complete, because (13) is equivalent to (P1)y,.
(2°) Now, we prove that {u}, {A},} are bounded in the corresponding function

spaces. Let (uy,, Xy, (up)) be solutions of (PL1),, h € (0, 1).
Taking the definition of (P1),, and substituting v, = wy, into it we get

a(up,up) = — o, X () - (Prup)(z) dz + (g, up)v. (15)
Because X}, (z) € 07 ((Prup)(x)) ae. in Q, we can use (1) and (12) asin (14)
to get
o Xn(2) - (Ppup)(z) dz < C1 + Collup]|{--
Substituting thisinto (15) and using (4) we see that
allup [ < O + Collunll{: + llgllv llun v

from which the boundedness of {u} in V follows.
Dueto (2) the Y1-norm of A}, is bounded, i.e.,

/ X ()2 do < C.
Qo

(3°) Now, we prove that cluster points of {u,} and { X}, } satisfy (P1).

Since V and Y7 are Hilbert spaces, there exist subsequences {u; } and {3} (in
the sequel we shall denote subsequences by the same symbol as the original ones)
and elementsu € V and X € Y3 such that

up ~wuinV ash — 0+; (16)
X, =~ XinYpash —0+. @an

First we show that » and X’ satisfy the equation

a(u,v) + . X -vdz = (g,v)v (18)
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foralv € V.Letv € V begiven. Dueto (8) there existsasequence{v, }, v, € V},
suchthat v, — v inV ash — 0+. Then by applying (11), (16), (17) it is obvious
that the following relations hold

a(up,vp) — a(u,v);

X, - Py, dz — X -vdz;
Qo Qo

<g7vh>V_> <97U>V7 aSh_>O+7
from which (18) follows.
It remains to show that
X(z) € 0j(u(zr)) ae.inQg. (19)

First we use (11) to get a subsequence of {u,} for which {P,u;} converges
strongly to u in Y3. Then passing to a subsequence if necessary we may assume
that the sequence { P, uy, } converges pointwisely to v a.e. in Qo.

Let ¢ € L>®(Qo; RM) begiven. Then

X(a) - gla)ds = lim [ RCRELE

Qo

<Wlimsup [ j°((Pyus)(z); ¢(z)) dz
h—0+ JQo

<@ [ limsupj°((Pyun); ¢(z)) dz
Qo h—0+

< [ (u(a); ¢(x) do.

which implies (19), because ¢ was arbitrary. For the completeness let us justi-
fy the steps (1)—(3). The first step is a consequence of the inclusion X} (z) €
97 ((Ppup)(z)) ae. in Qg and the definition of the generalized gradient. The sec-
ond step is due to the Fatou’s lemma and the following arguments. Because of
(2) any eement 1 from 8;((Pyus)) the inequality |7 < Ca(L + |(Pyus)(x)))
holds, we can deduce from Proposition 1 (€) that j°((Pyup)(z); ¢(x)) < C3(1 +
|(Prup)(z)])|¢(x)|. Moreover, we know that P, u;, converges strongly in Y3 and
pointwisely a.e. in Qg to u. Thus we can apply the Fatou's lemma to get the
inequality (2). Thethird step is due to the upper semicontinuity of the generalized
directional derivative (see Proposition 1 (a)) and the pointwise convergence of
P uy, to .

(4°) Itremainsto provethe strong convergenceof {uy, } to u. Becauseof (8), there
exists {up}, up, € Vj, suchthat up, — v inV ash — 0+. Using (4) and the fact
that u;, isasolution of (P1);, we seethat

allup, — apl|? < alup, — p,up —ap) = (g, up — )y

- /Q Xn(z) - (Pa(up — Ts)) (x) Az — a(@in, wp — ). (20)
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Passing to a subsequence if necessary, the right handside of (20) tendsto zero
as h — 0+ dueto (11). Using triangle inequality wet get the strong convergence
of the sequence {u,} touw in V.

4. Constrained Vector—Valued Hemivariational I nequalities

In this section we shall consider slightly modified problems, namely the so called
constrained vector-valued hemivariational inequalities. The mathematical formu-
lation of these problems is similar to the formulation of the unconstrained hemi-
variational inequalities (P1) and (P2) except we have now a nonempty, closed,
convex subset K of V' in which we look for solutions, i.e.

a(u,v —u) + [q, X - (v —u)dz > (g,v —u)y Y€K (CP1)

{ findu € K and X (u) € Y7 such that
and X (z) € 9j(u(z)) ae.inQg

or

findu € K and X (u) € Y> such that
{a(u,v—u)-l—fFoX-(v—u)dsz(g,v—u)v Vv e K (CP2)
and X (z) € dj(u(z)) ae.inTy.
REMARK 5. It would be possible to consider problems (P1),(P2) from Section 3
as specia cases of (CPL),(CP2), respectively. For the convenience of readers we
prefer to present results separately.

As previoudly these can be transformed into the equivalent operator inclusions:
findu € V suchthat 0 € Au — g + Tu + Ol (u); (CPY)

or
findu € V suchthat 0 € Au — g + Tou + Ol (u), (CP2)

where 01 (u) isthe generalized gradient of theindicator function 7k of K. Since
K is nonempty, closed and convex, 01k coincides with the subdifferential of the
convex function Ix. Moreover, 91 isamaxima monotone operator (see [18]).

Let us start to study the approximation of these problems. We shall formulate
exactly the same assumptions as for problems (P1) and (P2) (as before we shall
consider (CP1) only because the treatment of (CP2) is similar). Instead of V;, we
have to construct the approximation of the convex set K, but this can be donein a
standard way (see [4],[5],[6]):

Let { K, } beafamily of nonempty, closed convex subsetsof V;, (not necessarily
K; C K) satisfying

VUEKH{U}Z}, vy € Ky, tvp, —vinV ash — 0+; (21)
{Uh},UhEKhZUh—\UinvaSh—)0+:>U€K. (22)
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The approximation of (CP1) reads as follows:

findu,, € K;, and Xh(uh) € Y}, such that
a(un, vh — un) + [q, Xn - (Phon — Pyup) dr
> (g,vn —up)v Vup € Kp,

and Xh(x) S aj((Phuh)(:L")) ae. in Qo.

(CP1),

Next we shall prove:

THEOREM 3. There exists at least one solution (uy,, Xj,(up)) of (CP1), for any

h € (0,1). We can find a subsequence { (up’, Xn (upr))} of {(up, Xn(up))} such

that u;,, convergesstrongly to » in V' and X}, (uy,,) convergesweakly to X' in V7.
Moreover, (u, X') isa solution of (CP1).

REMARK 6. The counterpart of Theorem 3 holds for the problem (CP2), aswell.

The solvability proof of (CPL),, is based on the following existence result (see[1])
for the upper semicontinuous set-valued operators:

THEOREM 4. Let K be a closed, convex subset of a reflexive Banach space X
such that 0 € K, and let F' be a finite-dimensional subspace of X. Let T' be a
set-valued mapping from K N F into X’ such that for eachz € K N F, Tx is
a nonempty, bounded, closed and convex subset of X’. Suppose that T is upper
semicontinuous from K N F' to the weak topology of X', and that 7' is coercive on
KN F.Thenthereexistszo € KN Fandyy € Txosuchthatforall z € KN F,

(yo,z — zo)x > 0. (23)

Let us assume that X is a finite-dimensional Banach space. Then the following
corollary of Theorem 4 holds:

COROLLARY 1. Let K be a closed, convex subset of the finite-dimensional
Banach space X suchthat 0 € K. Let T be a set-valued mapping from K into X’
suchthat for eachz € K, T'z isanonempty, bounded, closed and convex subset of
X'. Supposethat T is upper semicontinuous from K to X', and that 7" is coercive
on K. Then thereexists zg € K and yg € Tz such that for all z € K,

<y07x - £UO>X Z O

REMARK 7. Corollary 1 holds true also in the case when the assumptions that
0 € K and T is coercive on K are replaced by the following ones. There is an
element z € K such that T is coercive with respect to Z on K, i.e. there exists
afunction ¢ : Ry — R with lim,_, ¢(r) = oo such that for al z € K and
y € T(z) itholds: (y,x — z)x > c(||z||x)|l=||x. This can be shown by applying
Corollary 1 to the mapping 7% (z) = T'(z + z) defined ontheset Kz = K — 7.
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Proof of Theorem 3. The proof will be donein several steps. Let usfirst fix some
ug € K and asequence {uf}, ul € K, suchthat ut — ugin 'V, which exists due
to (22).

(2°) First we prove the existence of a solution of (CP1),. The idea is to apply
Corollary 1 and Remark 7 to the set-valued mapping A, () — g, + T3 (+) introduced
in the proof of Theorem 1. We have already shown that this mapping is upper
semicontinuousand Ay vy, — gp, + Tr vy, iIS@nonempty, bounded, closed and convex
subset of V! for al v;, € Vj,. It remainsto show that Ay, (-) — g5, + T},(-) iscoercive
on K, with respect to uf. Let vy, € V3, and wy, € Thvy,. Then there exists z;, € V),
such that wy, = (Ph|Vh)*Zh and Zh(:L") € Bj((thh)(x)) a.e. in .

Using (1), (2) and (12) we get

(why v — ug)vi, = (Pulvi.) 2y vn — ug)v, = {21y Pov, — Prug)y;,

== [ anw) - (~(Peom)(@)) b~ [ (o) - (P () ks
Qo Qo

==/ 3°((Phon)(2); —(Pavp)(x)) dz

- /Q O+ Phon () DI (Pro) ()]
>~ [ (C1+ Cal(Pron)@)|") do (24)
Qo

([ (@1t Paon@))P ([ [Pa(o)? do)?

> —C1 = Co|| Pronll§, — C(L+ || Phonlly; )| Prugll,

> —C1— Collonll{, — C(L+ llvallvi) lug v, -

From (3), (4) and (24) we obtain that

(Anvn = gn + (Palv,)* 2z, vn — ug)v;,

= (Apvp — gh,vh — ug)v, + (2h, Pavn — Prug)y,

> allvnll;, = llgnllv: (lonllvi, + luglivi) = mllonlv, lug]lv,
—C1— Callonll, — C L+ llvallv)lluglv,

implying the coerciveness of Ay (-) — g5 + T,(+) on K}, with respect to ug. Then

the existence a solution of (CP1),, follows from Corollary 1 and Remark 7. The
proof of this part is now complete.

(2°) Next we prove that {u;} and {X},} are bounded in V' and Y3, respectively.
Let (up, X (up)) besolutions of (CPL),, h € (0, 1). Substituting v, = u{ into the
definition of (CP1);, we obtain
) < alun, uf) + [ A(o) - (P a)
0

—(Pyup)(z)) dz + (g,uq — up)v- (25)
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Taking into account that X}, (x) € 95 ((Pyup)(x)) ae. in o, we can deduce asin
(24) that

-, X () - ((Phun)(w) — (Phugh) () de
0

< O+ Callun Iy, + C' (1 [luplv) lug |-
Substituting this to (25) and using (4) we see that

allup ¥ < mllunllvlugllv +C1+ Callunll,

+C (L4 [funllv) llugllv + Ngllvr (lugllv + [lunllv),

which implies the boundedness of {uy, } in V. The boundednessof {A7,} in Y3 can
be shown in asimilar way as in the proof of Theorem 1.

(3°) The fact that cluster points of {u;} and {A},} satisfy (CP1) can be shown
exactly in the same way as previously. The only thing is to note that if we have a
sequence {uy, } converging weakly tow in V', asequence {vy, } converging strongly
towv in V and asequence { X, } converging weakly to X in Y7, we have (passing to
subsequencesif necessary):

limsupa(up, vy — up) < a(u,v —u);

h—0+
Xy - (Ppvp, — Ppup) dz — X (v—u)dz;
QO Q0
<gavh - Uh)V — (gav - U‘>V7
ash — 0+.

(4°) Also the strong convergence of {uy,} can be proved in asimilar way asin
the proof of Theorem 1. The only modification is that we use (21) (not (8)) to get
asequence {up }, up, € K suchthat u, — uwinV ash — O+.

5. Applications

Here we present one example, the approximation of which is based on results of
the previous sections.

Nonmonotone skin friction in plane elasticity (see[12]): Let us assume aplane
elastic body, represented by a polygonal domain Q@ C R? with the Lipschitz
boundary T'. The equilibrium state of Q is described by the system of equilibrium
equations:

O'ij,j"i‘Fi =0 inQ, i=1,2, (26)
where the stress tensor o = (aij)ijzl is related to the linearized strain tensor
e = (gij) j—1 by meansof alinear Hooke's law

1 8uk 8ul

= E(B_xl + (9_xk) (27)

0ij(u) = cijrier(w), whereey(u)



32 M. MIETTINEN AND J. HASLINGER

and c;;;; are elasticity coefficients, satisfying the usual symmetry and ellipticity
conditionsin §2. For simplicity let us assume that displacementsu = (u1, u2) are
equal to zeroonT'.

In order to describe the skin effects, we split F into two parts: F = F + F.
The part F is given a priori and represents an external loading on Q. The part
F (possibly multivalued) is induced by skin effects, arising on Qq, Q9 CC Q.
Therefore F = 0 on Q\Qo. Let us consider that the multivalued constitutive
(reaction-displacement) law is expressed in the form

—F(z) € 9j(u(z)) ae.inQo, (28)

where j : R> — R isalocally Lipschitz continuous function, satisfying (1) and
(2). The weak formulation of our problem, which is described by (26)- (28) reads
asfollows:

findu € (H5(€))? and X € (L?(Qo))? such that
(o(u), e(0)og + (X, v)o0, = (F,v)on Vv € (H5(R2))? (29)
and X (z) € 0j(u(z)) ae.inp.

For the approximation of (29) we shall use the finite element technique. Let
{Tn}, h — 0+ be aregular family of triangulations of Q. With any 7;, the space
of piecewise linear functions will be associated:

Vi, = {’Uh € (C(ﬁ))z | Uh|T € (P]_(T))z VT € Ty, v, = 00N F}.

Onany triangle T' € T, we shall consider the following quadrature formula:

[ #a) o ST (M) + F(O0T) + F(T), (30)

where my(T') isthe areaof T and M7, j = 1,2, 3 are the midpoints of the edges
of T. For simplicity let us assume that also g is a polygona domain such that
Qo = Uije/T;, where I = {i | T; € T, andint T; N Qg # 0}, i.e. Qo is aunion
of triangles, belonging to the origina triangulation 7y, the interior of which has
a nonempty intersection with Q. Since Qg is polygonal, the integration formula
(10) over Qg isgiven by taking asum of (30) over al T € I:

[, Fe)dem 3 SmaT(FOAT) + F ) £ LT (@)

Tel

Rearranging termsin (31), we finally obtain
| t@de~ Y dif(a)
0 %

where zi, = MJT for some j = 1,2,3 and T € I, while ¢, = my(T) or

¢ = 2(ma(T) + mo(T")) if the corresponding =, is on 9 or in the interior
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Figure 2. Partitions 7;, and 7;2.

of Qo, respectively. Here T and 7" are 2 adjacent triangles from I with z¢ asthe
common midpoint (see Figure 1).
With any triangulation 7;, we associate another partition 7,1 of ©, which can be

constructed as follows:

(i) it consists of quadrilaterals, nodes of which are vertices of 2 adjacent triangles

T',T € Ty, and their centre of gravities.

(ii) trianglesin the case, when one edge of T' € 7}, is on the boundary of €.

So we can write

ﬁ - UTe'ThT - UQEIT,}Q’

where Q's are elements of the new partition 7;! (see Figure 2athe partition 7;, and
Figure 2b the partition 7;1).

Denote by ©;, = UQ, where the union is taken over all Q’s, the interior of
which has a nonempty intersection with . These Q's will play the role of the
subsets K} introduced in Section 2, and used when defining the space Y;,. Since
by assumption dist (920, 052) > 0, each K. contains one integration point =% in
itsinterior. It is readily seen that (i)—(vi) of Section 2 are satisfied. It is aso easy
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to show (see[8], [10]) that in this case conditions (11) and (12) are satisfied. Since
at the same time, condition (8) is satisfied for our system {V}, }, the corresponding
discrete problems solved on V}, x Y}, are close on subsequencesto the continuous
one.

REMARK 8. For the completeness et us sketch shortly how one can prove (11).

1Pyon — vall$;

Z Z / |(Phon)i(z) — (Uh)¢($)|2dx

QeTii=127 @M%

<y Z/ h2|% (vy)s(z) |2 dz

QeTi=127QN%

< B2|lon |G (g r2).
Then, because of v;, — v in V' and the triangle inequaity we seeimmediatelty that
{Pyvy} convergesstrongly tov in Yy ash — O+.

REMARK 9. Thereis an alternative way how to construct ;. The sets K used
for the definition of Y}, are formed now by polygons, constructed as follows: Let
N; be anode of 7;,. We define K}, as a polygon bounded by segments, joining
centroids of al T' € T, having N; as a common vertex, to the midpoint of the
edges, containing V;. Such construction is described in [4],[5].

REMARK 10. Let us shortly describe the numerical realization of the discretized
nonmonotone skin friction problem. Using the notationsintroduced in the proof of
Theorem 1 we can rewrite it into the matrix form as follows (as the discretization
parameter h isfixed, we skip it):

findu = (ug,...,u,) € R* ands = (sq, ...,s,,) € [RM]™
suchthat (Au,v)ge + (s, PV)ipuim = (8, V)re Vv € R" P
ands; € Czaj((Pu)z) 1=1...m

where A = ((Ane", ©");)7 =18 = ({gn, ©*)13,) =1 € R*and (-, ) o, (-, ) jparym
denote the scalar products of R™ and [RM]™, respectively. Now due to the sym-
metry of the elasticity coefficients, the matrix A is also symmetric. Therefore one
possibility how to solve (P) is tranform it to a problem of finding local minima
or more generally substationary points of the corresponding potential function
L:R"™ — R,i.e.pointsw € R" suchthat 0 € 9L(w), where L is defined by

L(v) = 5(Av, V) — (8, V)re + U(v),

I\)IH
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where
T(v) =D cij((Pv)).
i=1

It is possible to show that all substationary points, especially all local minima, of
L are also solutions of the problem (P) (see[8],[10]). To find the local minima we
can use optimization methods for nonsmooth, nonconvex functions (see [11]), as
the function L is nonsmooth and nonconvex in general. The other possibility how
to solve (P) is to use an iterative method where the nonmonotone problem (P) is
approximated by a sequence of monotone subproblems which can be solved more
effectively (see [17]).
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